Thermal Durability of Bonded Interface between SiC and Tungsten for Nuclear Application

Yuuki Asakura*, Hirotatsu Kishimoto, Joon-So Park, Akira Kohyama

OASIS (Organization of Advanced Sustainability Initiative for Energy System/Material), Muroran Institute of Technology

Abstract
Applications of ceramic materials to LWRs, GFR, Fusion reactors and even irradiation testing of those, bonding/jointing technologies with metal/alloy are generally required. Among many joining methods, solid-state bonding, brazing/soldering and laser/electron beam welding are currently under R & D as potential candidates. This study focuses SiC/SiC composite material as a potential candidate for nuclear systems, where bonding with varieties of metals should be identified and established. This presentation covers bonding interface characterization and stability of W-SiC bonded panel. Bonding technology for W and SiC will be applied for fuel pin/reactor internals of LWR and GFR and divertors/arms of fusion reactors. As a fundamental and scoping research W and SiC panels were bonded by solid-state method. The characterization of W-SiC interface has been done micro-structural and micro-mechanical methods and those results are presented. Also thermal durability tests results are presented.

Bonded panel of W and SiC for nuclear application Previous study of bonding between metal and SiC

Objective
To provide basic thermal durability of W-SiC bonded panels under R & D at elevated temperatures.

The durability evaluation by two simulation condition; short term at higher temperature and long term at lower temperature.

The mechanical evaluation by shear strength and nano-hardness before and after the thermal durability test.

Experimental

- Outline of fabrication method for the bonded panel

 SiC plate, Hexoloy SiC (u-SiC)

 W plate, 99.9% purity, sintered and rolled

- Outline of TDT (thermal durability test)

 Specimen size : 2x2x3mm

 High temperature for short-time (HS)

 Temperature : 1400°C-1600°C

 Holding time : 1-20h

 Atmosphere : Vacuum

 Low temperature for Long-time (LL)

 Temperature : 800°C-1000°C

 Holding time : 100-200h

 Atmosphere : Vacuum

- Evaluation/Analysis

 Microstructure

 FE-SEM

 EPMA

- Nano indentation hardness

 (For TDT-HS)

- Resistivity measurement

 (For TDT-LL)

Results

- Microstructure and Mechanical property evolution of W-SiC bonded panel by TDT-HS

 Before TDT

 Columnar structure extend from the interface to W. After TDT-HS

 Reaction phase near the interface is disappeared and that is changing to large or fine grains. The columnar structure was unstable at 1500°C exposure in a vacuum. However a thin uniform multi-grain layer was generated.

- Microstructure and Mechanical property evolution of W-SiC bonded panel by TDT-LL

 Before TDT

 Columnar diffusion layer, consists of SiC rich phase and C rich phase, extends in W. Diffusion distance of SiC phase and C phase are controlled by reaction with W.

 After TDT-HS

 Contrast of O and Si disappeared or faded indicating evaporation of C and Si at the surface.

 The columnar structure was disappeared and thin layer of W-C phase was detected.

Summary

- The fabrication of W-SiC solid-state bonded panel was successfully accomplished without inserts nor special surface treatment.

- The excellent thermal durability of W-SiC bonded panel was anticipated by the thermal durability test through the stability of the reaction phase.

- As the next step of the W-SiC bonded panel R & D, two experimental plans are under planning; the short term high heat flux test by plasma exposure and the long term thermal durability test as was done here.

ACKNOWLEDGE

Present study is partly supported by the Ministry of Economy, Trade and Industry (METI) on “Research and Development towards Ensuring Nuclear Safety Enhancement” program.